
Quaternions

• William Rowan Hamilton (1805-1865)
– Algebraic couples (complex number) 1833
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Quaternions

• William Rowan Hamilton (1805-1865)
– Algebraic couples (complex number) 1833

– Quaternions 1843
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Quaternions

William Thomson

“… though beautifully ingenious, have been an 

unmixed evil to those who have touched them in 

any way.”

Arthur Cayley

“… which contained everything but had to be 

unfolded into another form before it could be 

understood.”



Unit Quaternions

• Unit quaternions represent 3D rotations
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Rotation about an Arbitrary Axis

• Rotation about axis     by angle
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Purely Imaginary Quaternion
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Unit Quaternion Algebra

• Identity

• Multiplication

• Inverse

• Unit quaternion space is

– closed under multiplication and inverse,

– but not closed under addition and subtraction
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Unit Quaternion Algebra

• Antipodal equivalence

– q and –q represent the same rotation

– 2-to-1 mapping between S and SO(3)

– Twice as fast as in SO(3)
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Rotation Composition

• Rotation by a matrix

• Rotation by a unit quaternion

• Composition of Matrices (or Unit quaternions) is 

simple multiplication
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